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Transformation Properties of a Constrained 
Hamiltonian System and PBRST Charge 
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Received April I0, 1993 

We derive a generalized first Noether theorem for weakly quasi-invariant 
systems with singular higher-order Lagrangians, subject to the extra constraints 
and generalized Noether identities for a variant system in phase space. The 
strong and weak conservation laws for variant systems are also deduced. Some 
preliminary applications to field theories are given. In certain cases a variant 
system is also a constrained Hamiltonian system. A PBRST (weak) conserved 
charge is obtained that differs from the usual BRST charge. 

Symmetry is one of the most significant concepts in modern theoretical 
physics. Noether theorems refer to the invariance of a system. In previous 
papers we gave a generalized first Noether theorem (GFNI) for constrained 
and nonconservative systems, and generalized Noether identities (GNI) for 
variant systems (Li, 1981, 1984, 1985, 1987, 1988; Li and Li, 1990). In these 
papers the Lagrangian is expressed in configuration space, and correspond- 
ing transformations are given in terms of Lagrange's variables. For systems 
with regular Lagrangians in classical mechanics, the invariance under a 
finite continuous group in terms of Hamilton's variables was discussed by 
Djukic (1974). A presymplectic version of Noether's theorem for a con- 
strained system was proved (Ferrario and Passerini, 1990). The extended 
second Noether theorem was discussed by Lusanna (1991) for weakly 
quasi-invariant systems. A system with singular Lagrangian is subject to 
some inherent phase space constraints (Dirac, 1964). The generalization of 
Noether theorems in canonical variables for systems of finite degrees of 
freedom with singular Lagrangian was given by Li and Li (1991), and 
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systems with singular higher-order Lagrangian were also investigated (Li, 
1991). Here the transformation properties of  singular Lagrangians in terms 
of canonical variables for field theories (including higher-order derivatives) 
are further investigated. Theories with higher-order derivatives (Galv~o 
and Pimentel, 1988; Saito et al., 1989) exhibit many interesting aspects. 

Consider a system described by a Lagrangian function depending on a 
set of field variables r =-- {r ~ = 1, 2 . . . . .  N, and their first and 
second derivatives with respect to the space-time coordinates, de (x ) - -  
r ~ {Su~/~(x)}, 1~2~/~-~ I~,/tv ~ {0/20yea(x)}, #, v = 0, 1, 2, 3. The flat space- 
time metric is q,v = diag( + - - - ) .  Let ~ = ~ ( r  ~r 02r be the La- 
grangian density, which is called singular (or degenerate) if the Hessian 
matrix is degenerate 

8 2 ~  
detlH~a I = det ~ = 0 (1) 

The Ostrogradsky transformation introduces canonical momenta (Galvgo 
and Pimentel, 1988) 

- (2a) 

9 ~  
rc~') - O~;~ (2b) 

One can then go over from the Lagrangian description to the Hamiltonian 
description. The canonical Hamiltonian density is given by 

M',. = ~(o),:,~ 
,o~ ~,(o) + ~<,'q/~l) - ~e (3) 

where q/~0)= r  q/~l)= q)'. Suppose the rank of  the Hessian matrix is 
N -  R, one cannot solve for all ~;" from (2b), the definition of  canonical 
momenta, because of  (1). This implies the existence of  constraints (Galv~o 
and Pimentel, 1988) 

0 ~b,(~O(r), x(~')) ~ 0, r = 0 ,  1, a = l , 2  . . . . .  R < N  (4) 

which are called primary constraints (PC), and ~, is the symbol for weak 
equality, which indicates that one is allowed to impose the constraints only 
after calculating any Poisson bracket. 

The canonical action for the system is given by 

l--f, e'rd4x= f, t ~,(, -,u d4x (5) 
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Let us consider the transformation properties of  the system under the 
continuous group with the infinitesimal transformation given by 

X ~" ---- x ~ -F 8X ~ 

O (~,)(x') = ~ ~',)(x) + 8qJ ~',)(x) (6) 

~(;)(x') = ~>(x) + &(;)(x) 

In (6), 5 ~ ) ,  5~(d ) are total variations; they can be expressed in terms of  the 
local variations <Y~,), ( ~ ) .  6 ~ )  = 8~0~,) + qJ~,6x +' and 5~(d ) = 8n(d ) + 
n(')Sx u Suppose the variation of  the Lagrangian ~p is given by ~t,/t 

8~p = 8uA"+  W under the transformation (6); we have 

81 _ - 1  

;o . 
= [8u(AU - s Sx") - ~ 0z~)~-~brr)) + W] d4x (7) 

where 

8I 8He 8 1 _  ~(d) 8Hc 
&~---~ = q>~'> &~'>' 8 G >  - 8G---~ (8) 

and Hc = Sa ~ d4x. 
For a finite continuous group Q ,  let 8x ~ = e#z~'#(x, ~0~), zc(d)), 8~0~) = 

~(~)(x, ~ ) ,  ~z(d)), 5rc~ ) = e~l(~)~(x, ~ ) ,  ~)) ,  and A" = ~AU~(x, ~O~), ~(~)), 
where e~ ((r = 1, 2 , . . . , s )  are parameters. Suppose that for a weakly 
quasi-invariant system under this transformation (6), W &  0 (L-means 
"evaluated on the trajectory of  motion") and the variation of  the constraint 
conditions (4) are given by 

8~ ~ = 0~o ~ o  &(;> ~ 0 (9) 

These conditions imply that the constraints are invariant under the local 
variation induced by (6). Introducing a set of  Lagrange multipliers 2a(x), 
combining the expressions (7) and (9), and using the equations of  motion 
of  a constrained Hamiltonian system (Gitman and Tyutin, 1990) 

6Hr ~(,)= 8Hr (10) 

with 

Hr = H,. + H' = f (oug,. + 2a~b ~ d3x (11) 
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one obtains the following GFNT in the canonical formalism: If under the 
transformation (6) the phase-space Lagrangian ~p=~,r ,~ V'~r) - 3~ac is 
weakly quasi-invariant (i.e., 6~r =o 8~ A~ ) and the constraints are invariant 
under the local variation determined by (6), then there are s constants of 
motion 

trc, r ~r~ - YgcZ o~ _ AO~) d3x = const (a = 1, 2, o . . ,  s) (12) 

This result is a generalization of regular and singular Lagrangian systems 
with finite degrees of freedom (Li and Li, 1991; Li, 1991). 

From the stationarity of the PC, one can define successively the 
secondary constraints (SC) according to the Dirac-Bergmann algorithm. 
All the constraints are classified into first class and second class. Dirac 
conjectured that all secondary first-class constraints (SFCC) are indepen- 
dent generators of the gauge transformation which generates equivalence 
transformations among physical states. If this conjecture holds true, then 
the dynamics of a constrained Hamiltonian system should be correctly 
described by the equations of motion arising from the extended Hamilto- 
nian He = HT + #aZa, where Z~ are SFCC and/~a are Lagrange multipliers. 
There have been some objections to Dirac's conjecture, and some coun- 
terexamples have been given. All these objections are based on the straight- 
forward observation that the equations of motion derived from the 
extended Hamiltonian He are not strictly equivalent to the corresponding 
Lagrange equations. Based on the symmetry properties in phase space for 
the constrained Hamiltonian system, we can consider whether the conser- 
vation laws derived from He via the canonical formalism are equivalent to 
the results arising from Lagrange's formalism via the classical Noether 
theorem. We presented an example for a system with finite degrees of 
freedom in which Dirac's conjecture fails (Li, 1991) in which we did not 
write the constraints in linearized form as Cawley and others do. This 
implies that the dynamics of a constrained Hamiltonian system should be 
described by the equations of motion deriving from the total Hamiltonian 
H T �9 

Similar discussion can be given for field theories. 
The GFNT in the canonical formalism can be easily extended to the 

case when the system is subjected to the extra constraint fb(x, ~ ) =  0 
(b = 1, 2 . . . . .  M, R + M < N) and the equations of motion are derived 
from H~ = H r + ~ #bfb d3x, where #b(x) are also Lagrange multipliers, in 
this case one need further to require that the extra constraints are invariant 
under the local variation determined by (6). 

Now consider the infinite continuous group Good, and let fix ~ = 
= T~e (x), = Au~(x), and W R ~ ( x ) ,  ~qq~(x) S ~ r ~ ( x ) ,  ~ ' ~ ( x )  = ~ ~ A~ = 
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U~e~(x), where e~(x) are arbitrary functions ( a =  1 , 2 , . . . , s ) ,  and 
R~, S(~)~, T(~ ), A~, and U~ are linear differential operators: 

R pa _ ~ # v ( j )  r~ e _ _  / , . , a v ( k )  c ~ r ( r )  = [-'(r)v(l) ~ 
- -  " a  t~v ( j ) ,  S ( r ) a  - -  ~ ( r ) a  t~v(k),  --aer "~ a~ *Jr(l) 

(13) 
A ~  = o~(m),~ _ ,~(n)  ~ a '~v(m), S a  - ~ a %u(n) 

where 
n 

U~ (~) = U ~ ,  8,(~) = 8~8~,8~ �9 �9 "GSp, (14) 

and a, b, c, e, and u are functions of x, ~r) ,  and n~ r). From the identity (7), 
one can choose ~(x)  and their derivatives up to a required order to vanish 
on the boundary of a domain, and then we can make the boundary terms 
of the right-hand side of the identity (7) vanish. We repeat the integral by 
parts of the remaining terms of this identity, after which we apply the 
fundamental lemma of the calculus of variation to conclude that the GNI 
in canonical variables can be written as 

= G ( 1 )  (~ = l, 2 . . . . .  s) (15)  

where R~, S(~)o, :r(d2, and Ur are adjoint operators with respect to 
RS, S(%~, T(2, and Ur respectively (Li, 1987, 1988). 

As is well known, a gauge-invariant system in the Lagrangian formal- 
ism has a Dirac constraint. Using the GNI (15), we can further show that 
for certain variant systems there is also a Dirac constraint. Suppose in the 
expressions (13) we use 

R ~  = a ~ ,  S(r)~ = b(r)r + b(o~3 ~ + 
(16) 

T(r) = r(r) -4- e ( r ) ~  Uv 

where a, b, c, and u are functions of x, ff~'~), and n(~ 0, and u~ ~ are functions 
of x, ~ .  The massive Yang-Mills theories with second-order Lagrangian 
belong to this category (Saito et al., 1989). According to the GNI (15) and 
the definition of canonical momenta (2a), which leads to terms containing 
fifth-order time derivatives of ff~ and must cancel each other irrespective of 
other terms (Li, 1991), 

b(,.),~Ho,~b(5) = 0 (17) 

These conditions are to be fulfilled for any fifth-order time derivatives of 
tp~; therefore one obtains 

r162 b(r),,H~,~ = 0 (18) 
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Since ~o b(,)~ are not all identically zero (for example, the gauge transforma- 
tion), this implies det[H~[ = 0; then the Hessian matrix is degenerate, and 
the system has a Dirac constraint. 

Substituting the expression (16) into (7), one obtains 

= a ~ [ ( A 9  - Z ~ a ~ ) ~  ~] + (u~ + u~a~ + u~V~av)~ ~ 

d i. ( r ) / ~  ~ ~ U cr 
dt t '~ t~'(o~ - r e ] (19) 

If u~ ~ are symmetric with respect to indexes/z and v, multiplying (15) by e ~ 
and subtracting the result from (19) yields 

" - ~  -cxo" ~.lr(r) k () (~']~r)) @ 

#v #v -~--d~L,~.~ t , . . , ( O a - - I ~ ( r l . , a a ) 8  ]=0  (20) 

which leads to the strong conservation law 

J =  I d 3 x ~ [  , ~ ~ 4-r(~)~ 6I  61 
7 v  { L  li](r) - -  -excr 1~7]7(r ) -i- ~v b(%~r 

(~o~ 6__Ls ~ o o~ o~ 
- -  6l/]~r))(~v +A~ ~ - A ~  -u,~ -u,~ c~ + 8.u,~ k'(r)a 

"l- ,,~ t~'(r)a ~/(r).aaa e = const (21) 

Expression (21) is valid whether or not the equations of  motion are 
satisfied. If  the group Goos has a subgroup and e~(x) = ~ ( x ) ,  where e8 
are numerical parameters of a continuous group, one gets the weak 
conservation law along the trajectory of motion, 

\ v W (r) / k t" (r)a 

0 0 v  Ov..l_~(r)[~ct o; i . t l f f  t "}- ~,~pa 0 - -  A ~ - u ,  -- ua Ov + Ovu . . . .  , \~-~(r)a -- @ (r),#atr) ~ p 

= const (p = 1, 2 . . . .  , s) (22) 
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In the case of  a singular first-order Lagrangian, we can proceed in the 
same way to obtain similar results (the subscript being suppressed). 

In non-Abelian gauge theory, the Lagrangian without ghosts violates 
unitarity and hence the effective Lagrangian is given by 

50 ~eff : --41 --uv-- F~ Fuv~ + Ba~?u Aua + ~ ( B a )  2 - -  O u C ~ D ~ a C  b (23) 

a ~ a b c a = 6 g O .  + f ~ ' b A ;  (24) Fur = 8~A'~ - t ~ A .  + f g c A u A v ,  Dub 

where A~ are Yang-Mil ls  fields, C a and C a are odd ghost fields, and B a are 
additional even fields. The BRST invariance of the effective action implies 
the conserved BRST charge (Gitman and Tyutin, 1990) 

= f d x ( - F  D , , b C  + B D b  C - - ~ O ~  ~) (25) Q 3 o~o a b a oa b I 

The canonical momenta conjugate to the fields A~, B a, C a, and C a are 

~Zoa = B ~, 7zi~ = F~o, rcB~ = O, 
(26) 

= _da ,  =D~ 

respectively. The canonical Hamiltonian density is given by 

1 2 1 .z 
5r = -~ rC~a + A ~  + "~ F~k + nag,, --  r~af~,~A~ ~ 

50 + CaO~D'IbC b - B"O~A ~a - - f  (Ba) 2 (27) 

There are two PC: 

~b~ = r~0a - B a ~ 0, ~b~ = 7zs. ~ 0 (28) 

The total Hamiltonian is given by 

H r  = H c + H"  = f d3x ( ec + ,lT ~ + ,~o.~ 02W2a] ~ (29) 

The constraints (28) are second class, and so secondary constraints are 
absent. 

Let us now consider only the transformation of  Yang-Mil ls  fields, 
fixing the ghost fields and additional fields in the BRST transformation, 

3A~ a b a = DubO , 5nua =fgcrCucO b 
(30) 

5 C  a = 6 C  a = 6 B  a = O, (in,, = 6Yea = &cB.  = 0 
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where 0 a = Caz and z is a Grassmann parameter. Under the transformation 
(30), the effective Lagrangian ~eer r is variant 

5~efr = F(O) + uU~,O" + ua~20" = F(O) 

--}-f~c(~3~'C a" C c - BaAt~C)a~Ob + BaE~20a (31) 

where F(O) does not contain the derivatives of the 0 a. In this case, similar 
to deducing expression (22), we have 

t tJf[- 6H'_~o_ o ~' ~ I b} j w =  d3x ~I6b Ub--U~ +O~U ~ + rc,D,b C =const  (32) 
j v  

Thus, we obtain the conserved PBRST charge (P stands for "partial") 

Q(P) = fvdax [Tzt~aD~C b - q - f ~ e ( g a C b C  e - BaA~ e) -t- B~C a - B~Ca] (33) 

This conserved PBRST charge differs significantly from the conserved 
BRST charge (25). 

Similarly, if we fix the gauge field A ~ and change only the ghost fields, 
the weak conservation law implies a trivial identity. 

The effective Lagrangian (23) is invariant under the gauge-translation 
transformation, which implies the gauge-invariant conserved energy- 
momentum (Dai, 1987). But if we consider only the transformation of 
Yang-Mills fields, we can obtain other weak conserved quantities. 

We have shown that for certain cases the GNI (or strong conservation 
laws) in phase space may be converted into the weak conserved charge 
along the trajectory of motion even if the Lagrangian is not invariant under 
the specific transformation. This algorithm differs from the usual first 
Noether theorem, where the invariance under a finite continuous group 
implies the conservation laws. 

As is well known, BRST charge annihilates the vacuum; the conserved 
PBRST charge may also impose some supplementary conditions on physi- 
cal states as well as BRST charge and ghost charge (Fukuda et al., 
1981, 1983). 

For Yang-Mills theories with higher derivatives whose Lagrangian is 
given by (Saito et al., 1989; Gitman and Tyutin, 1990) 

1 t7. l ~ . _  cD~F~D~F u~. (34) = 

using the Faddeev-Popov trick to formulate its path integral quantization, 
one can obtain the effective Lagrangian 

1 2 s = ~g - ~ (d~,A ~") - d~,C."D~"C b (35) 
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which can be also derived by using the Dirac theory o f  constrained systems 
(Gi tman and Tyutin,  1990). The effective Lagrangian (35) is invariant 
under  the BRS t ransformat ion,  which implies the BRS charge. But if we 
consider only the gauge t ransformat ion  o f  Y a n g - M i l l s  fields, we can 
obtain another  PBRS charge. 
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